

Il trattamento dei pazienti affetti da NSCLC in stadio IV

Michele Fiore

Radiation Oncology

Campus Bio-Medico University of Rome

DI ROMA

Oncogene-Addicted Non-Small-Cell Lung Cancer

Several different driver mutations have been identified and many studies have clearly shown that upfront TKI monotherapy may improve the overall outcome of these patients.

Oncogene-Addicted Non-Small-Cell Lung Cancer

TRATTAMENTO DEL NSCLC AVANZATO

IL PRESENTE

EGFR

ONCOGENE-ADDICTED NSCLC

EGFR

Soria JC. Et al. NEJM 2018; 378(2):113-125

EGFR

Subgroup	No. of Patients	Hazard Ratio for Disea	se Progression or Death	(95% CI)
Overall	556			
Log-rank test: primary analysis				0.46 (0.37-0.57)
Cox proportional-hazards model				0.46 (0.37-0.57)
Sex				
Male	206			0.58 (0.41-0.82)
Female	350			0.40 (0.30-0.52)
Age at screening				
<65 yr	298			0.44 (0.33-0.58)
≥65 уг	258			0.49 (0.35-0.67)
Race				
Asian	347			0.55 (0.42-0.72)
Non-Asian	209			0.34 (0.23-0.48)
Smoking history				
Yes	199			0.48 (0.34-0.68)
No	357			0.45 (0.34-0.59)
Known or treated CNS metastases at trial entr	у			
Yes	116			0.47 (0.30-0.74)
No	440			0.46 (0.36-0.59)
WHO performance status				
0	228			0.39 (0.27-0.56)
1	327			0.50 (0.38-0.66)
EGFR mutation at randomization				
Exon 19 deletion	349			0.43 (0.32-0.56)
L858R	207			0.51 (0.36-0.71)
EGFR mutation by circulating tumor DNA				
Positive	359			0.44 (0.34-0.57)
Negative	124			0.48 (0.28-0.80)
Centrally confirmed EGFR mutation				
Positive	500			0.43 (0.34-0.54)
Negative	6			NC (NC-NC)
	0.1	0.2 0.3 0.4 0.6 1.0	2.0 10	0.0
		Osimertinib Better St	tandard EGFR-TKI Better	

Soria JC. Et al. NEJM 2018; 378(2):113-125

EGFR

Subgroup	No. of Patients	Hazard Ratio for Disease Progr	ression or Death (95% CI)
Overall	556		
Log-rank test: primary analysis			0.46 (0.37-0.57)
Cox proportional-hazards model		-	0.46 (0.37-0.57)
Sex			
Male	206	i	0.58 (0.41-0.82)
Female	350		0.40 (0.30-0.52)
Age at screening			
<65 yr	298		0.44 (0.33-0.58)
≥65 yr	258		0.49 (0.35-0.67)
Race			
Asian	347		0.55 (0.42-0.72)
Non-Asian	209	_ _	0.34 (0.23-0.48)
Smoking history			
Yes	199		0.48 (0.34-0.68)
No	357		0.45 (0.34-0.59)
Known or treated CNS metastases at trial entry	,		
Yes	116		0.47 (0.30-0.74)
No	440		0.46 (0.36-0.59)
WHO performance status			
0	228		0.39 (0.27-0.56)
1	327		0.50 (0.38-0.66)
EGFR mutation at randomization			
Exon 19 deletion	349		0.43 (0.32-0.56)
L858R	207		0.51 (0.36-0.71)
EGFR mutation by circulating tumor DNA			
Positive	359		0.44 (0.34-0.57)
Negative	124		0.48 (0.28-0.80)
Centrally confirmed EGFR mutation			
Positive	500		0.43 (0.34-0.54)
Negative	6		NC (NC-NC)
	0.1	0.2 0.3 0.4 0.6 1.0 2.0 Osimertinib Better Standard I	10.0

Soria JC. Et al. NEJM 2018; 378(2):113-125

EGFR

Subgroup	No. of Patients	Hazard Ratio for Dise	ase Progression or Death	(95% CI)
Overall	556			
Log-rank test: primary analysis				0.46 (0.37-0.57)
Cox proportional-hazards model				0.46 (0.37-0.57)
Sex				
Male	206			0.58 (0.41-0.82)
Female	350			0.40 (0.30-0.52)
Age at screening				
<65 yr	298			0.44 (0.33-0.58)
≥65 уг	258			0.49 (0.35-0.67)
Race				
Asian	347			0.55 (0.42-0.72)
Non-Asian	209			0.34 (0.23-0.48)
Smoking history				
Yes	199			0.48 (0.34-0.68)
No	357			0.45 (0.34-0.59)
Known or treated CNS metastases at trial en	try			
Yes	116			0.47 (0.30-0.74)
No	440			0.46 (0.36-0.59)
WHO performance status				
0	228			0.39 (0.27-0.56)
1	327			0.50 (0.38-0.66)
EGFR mutation at randomization				
Exon 19 deletion	349			0.43 (0.32-0.56)
L858R	207			0.51 (0.36-0.71)
EGFR mutation by circulating turnor DNA				
Positive	359			0.44 (0.34-0.57)
Negative	124			0.48 (0.28-0.80)
Centrally confirmed EGFR mutation				
Positive	500			0.43 (0.34-0.54)
Negative	6			NC (NC-NC)
	0.1	0.2 0.3 0.4 0.6 1.0	2.0 1	0.0
		Osimertinib Better S	Standard EGFR-TKI Better	

Soria JC. Et al. NEJM 2018; 378(2):113-125

BARCELONA ES

ONCOGENE-ADDICTED NSCLC

*As assessed by the investigator; Patients with multiple events in the same category counted only once in that category; Patients with events in more than one category counted once in each of those categories; "Grouped term

EGFR

ONCOGENE-ADDICTED NSCLC

SAFETY SUMMARY

- · Median duration of exposure: osimertinib, 20.7 months; comparator EGFR-TKI, 11.5 months
- ◆ Grade ≥3 possibly causally related AEs: osimertinib, 51 patients (18%); comparator EGFR-TKI, 79 patients (29%)

Data cut-off: 25 June 2019

*As assessed by the investigator, Patients with multiple events in the same category counted only once in that category; Patients with events in more than one category counted once in each of those categories; "Grouped term

ALK

ALK

ONCOGENE-ADDICTED NSCLC

Drug name	Study	Phase	Population	VS	ORR	PFS	OS
Crizotinib	PROFILE 1007	111	Platinum-based chemotherapy pretreated (n = 347)	Pemetrexed or docetaxel	65% versus 20%	7.7 versus 3.0 months	20.3 (95% Cl 18.1—not reached) versus 22.8 months
Crizotinib	PROFILE 1014	111	Previously untreated (n = 343)	Platinum plus pemetrexed	74% versus 45%	10.9 versus 7.0 months	Median OS was not reached in either group
Ceritinib	ASCEND4		Previously untreated (n = 376)	Platinum plus pemetrexed	72·5% vs 26%	16.6 vs 8.1 months	NA
Ceritinib	ASCEND5	111	Platinum-based chemotherapy and crizotinib pretreated (n = 231)	Pemetrexed or docetaxel	39% vs 7%	5·4 vs 1.6 months	18.1 vs 20.1 months not statistivaly significant.
Alectinib	Global study		Crizotinib preteated	Single arm	50%	8.9 months (95% CI, 5.6–11.3 months)	NA
Alectinib	ALEX	Ш	Previously untreated (n = 303)	Crizotinib	82.9% vs 75.2%	34.8 vs 10.9 months	NA
Alectinib	J-ALEX	111	Previously untreated	Crizotinib	85% vs 70%	20.3 vs 10·2	NA
Brigatinib	NCT01449461	1/11	Previously Treated with crizotinib and naive (n = 79)	Brigatinib (30–300 mg)	71% in crizotinib- pretreated and 100% in crizotinib-naive group	13.4 months in pretreated crizotinib	NA
Brigatinib	ALTA	II	Previously treated with crizotinib and/or chemotherapy (n = 222)	Brigatinib 90 g vs 180 mg	48% (90 mg), 53% (180 mg)	9.2 and 16.7 months	NA
Lorlatinib	NCT01970865		6 cohorts including pts naive (275 in tot)	Lorlatinib	90% (naive)	NA	NA

Addeo A, et al. Critical reviews in Oncology/Hematology, 2018; 122:150-156

Subgroup Analysis

Subgroup	No. of Events/ No. of Patients	Hazard Ratio for Dis or Death (!	ease Progression 95% CI)
Overall	164/303		0.48 (0.35-0.66)
Age	,		, , ,
<65 yr	125/233		0.48 (0.34-0.70)
≥65 yr	39/70		0.45 (0.24-0.87)
Sex	,	1	, ,
Female	91/171	- 	0.39 (0.25-0.60)
Male	73/132		0.61 (0.38-0.98)
Race		1	
Asian	72/138	i	0.46 (0.28-0.75)
Non-Asian	92/165		0.49 (0.32-0.75)
Smoking status		1	
Active smoker	12/17	;•	- 1.16 (0.35-3.90)
Nonsmoker	103/190		0.44 (0.29-0.66)
Former smoke	er 49/96	i	0.42 (0.23-0.77)
ECOG performan status	nce		
0	44/97		0.40 (0.21-0.77)
1	105/186	- 	0.48 (0.32-0.71)
2	15/20		0.74 (0.25-2.15)
CNS metastases at baseline			
Yes	78/122	- 	0.40 (0.25-0.64)
No	86/181	- 	0.51 (0.33-0.80)
Previous brain radiation	,		
Yes	26/47 -		0.33 (0.14-0.74)
No	138/256		0.52 (0.36-0.73)
	0.1	1.0	10.0
	Ale	ectinib Better Crizoti	nib Better

Peters S, et al. NEJM 2017; 377(9):829-838

Subgroup Analysis

Subgroup	No. of Events/ No. of Patients	Hazard Ratio for Di or Death	isease Progression (95% CI)
Overall	164/303		0.48 (0.35-0.66)
Age			, , ,
<65 yr	125/233		0.48 (0.34-0.70)
≥65 yr	39/70		0.45 (0.24-0.87)
Sex			
Female	91/171	- 	0.39 (0.25-0.60)
Male	73/132	 ;	0.61 (0.38-0.98)
Race		1	
Asian	72/138	i	0.46 (0.28-0.75)
Non-Asian	92/165		0.49 (0.32-0.75)
Smoking status		1	
Active smoker	12/17	;•	1.16 (0.35-3.90)
Nonsmoker	103/190		0.44 (0.29-0.66)
Former smoke	r 49/96	i	0.42 (0.23-0.77)
ECOG performar status	nce		
0	44/97	;	0.40 (0.21-0.77)
1	105/186	_ 	0.48 (0.32-0.71)
2	15/20	_ 1	0.74 (0.25 2.15)
CNS metastases at baseline	,		, , , , , , , , , , , , , , , , , , ,
Yes	78/122	i	0.40 (0.25-0.64)
No	86/181	 ;	0.51 (0.33-0.80)
Previous brain radiation			
Yes	26/47 -		0.33 (0.14-0.74)
No	138/256		0.52 (0.36-0.73)
	0.1	1.0	10.0
	Ale	ectinib Better Crizot	tinib Better

Peters S, et al. NEJM 2017; 377(9):829-838

ALK

ONCOGENE-ADDICTED NSCLC

The era of immunotherapy

A SCIENTIFIC REVOLUTION

A THERAPEUTIC REVOLUTION

A CONCEPTUAL REVOLUTION

Lung cancer is an "immunogenic" tumor that can respond to immunotherapy treatment

IMMUNOTHERAPY IN NSCLC

IMMUNOTHERAPY IN NSCLC

PEMBROLIZUMAB

Keynote 024

Reck M, et al. NEJM 2016; 375(19):1823-1833

IMMUNOTHERAPY IN NSCLC

PEMBROLIZUMAB

Keynote 024

THE ERA OF IMMUNOTHERAPY

Zhou F, et al. Cell Mol Immunol. 2021; 18(2):279-293

THE ERA OF IMMUNOTHERAPY

Time line (2015-2020)

Reck M, et al. J Clin Oncol. 2021; 39(21):2339-2349
THE ERA OF IMMUNOTHERAPY

Time line (2015-2020)

Reck M, et al. J Clin Oncol. 2021; 39(21):2339-2349

THE ERA OF IMMUNOTHERAPY

THE ERA OF IMMUNOTHERAPY

IMMUNOTHERAPY AND CHEMOTHERAPY

Bailly C, et al. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer. 2020

STRATEGIES OF COMBINATION

strategies of combination: ICI+CT

FIRST-LINE STUDIES WITH BENEFIT IN OS

FIRST-LINE TREATMENT IN NSCLC NON-ONCOGENE ADDICTED

FIRST-LINE TREATMENT IN NSCLC NON-ONCOGENE ADDICTED

WHAT'S NEXT?

COMBINATION STRATEGIES

Oligometastatic Disease: Nine Clinical Scenarios

Guckenberger M, et al. Lancet Oncol 2020; 21: e18–28

Oligometastatic NSCLC

- 1. Do patients with OM NSCLC benefit from local therapies?
- 2. When should local therapy be administered?
- 3. The choice of the target (volume and dose)

"BETTER-THAN-EXPECTED" SURVIVAL after local treatment (RETROSPECTIVE DATA)

Inoue T et al, Jpn J Clin Oncol 2010: 41 pts with <5 M+ (25 NSCLC) Median survival 24 months; PFS 10 months, 3y OS 39%, 3y PFS 20%

Collen et al, Annals of Oncol 2014: 26 pts with <5 M+ Median survival 23 months, PFS 11.2 months

Owen D et al. Radiat Oncol 2015: 63 pts with LUNG NODULES (40 from NSCLC) Median survival 35 months, PFS 10.7 months

Prospective Trials and RANDOMIZED DATA on LCT in oligoMets NON ONCOGENE-ADDICTED NSCLC

Trial	N° patients	PFS (mon	ths)	Notes
De Ruysscher D J Thorac Oncol 2012	39	12.1		OS: 13.5months
Hughes RT Int J Radiat Oncol Biol Phys 2017	26	11.2		Closed early
Gomez D (random phase II) Lancet Oncology 2016	49/94	11.9 vs 3.9	9	Time to new site failure 11.9 vs 5.7 IDMC closed
Iyengar P (random phase II) JAMA Oncol. 2018	29/30	9.7 vs 3.5	5	IDMC closed

Randomized evidences for LCT in Oligometastatic NSCLC

Iyengar et al., JAMA Oncol 2018

Gomez et al., J Clin Oncol 2019

SABR-COMET: Stereotactic Radiation for the Comprehensive Treatment of Oligometastatic Cancers – Results of a Randomized Study

<u>D. Palma</u>, R. Olson, S. Harrow, S. Gaede, A. Louie, C. Haasbeek, L. Mulroy, M. Lock, G. Rodrigues, B. Yaremko, D. Schellenberg, B. Ahmad, G. Griffioen,

S. Senthi, A. Swaminath, N. Kopek, M. Liu, K. Moore, S. Currie, G. Bauman, A. Warner, S. Senan

SABR-COMET Schema

Baseline Characteristics

Between February 2012 and August 2016, 99 patients were randomized at centres in Canada, Scotland, Netherlands and Australia

<u>Ch</u>	aracteristic	<u>All Patients</u> <u>(n=99)</u>			
Age – median, ((min, max)	68 (43, 89)			
Sex – n(%)					
Male		59 (59.6)			
Female		40 (40.4)			
Site of Original Primary Tumor – n(%)					
Breast		18 (18.2)			
Colorectal		18 (18.2)			
Lung		18 (18.2)			
Prostate		16 (16.2)			
Other		29 (29.3)			

Progression-Free Survival

Palma DA, et al. Lancet 2019; 393(10185):2051-2058

Overall Survival

Palma DA, et al. Lancet 2019; 393(10185):2051-2058

Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial

Palma DA, et al. J Clin Oncol 2020; 38:2830-2838

Stereotactic Radiation for the Comprehensive Treatment of Oligometastases (SABR-COMET): Extended Long-Term Outcomes

No new grade 3-5 toxicity

No impact on QoL

Harrow S, et al. IJROBP 2022 Nov 15 114(4):611-616

Median follow-up was 5.7 years

CURB: Ph II Consolidative Use of RT to Block OPD

CURB: Ph II: Interim Analysis Consolidative Use of RT to Block OPD

Final Analysis of Consolidative Use of Radiotherapy to Block (CURB) Oligoprogression Trial - A Randomized

Study of Stereotactic Body Radiotherapy for Oligoprogressive Metastatic Lung and Breast Cancers

Most (75%) had >1 site of oligoprogression and 47% had >5 total lesions

Median PFS was 3.2 months in SOC arm vs. 7.2 months in SBRT arm (p=0.002).

Stratified analysis showed that NSCLC patients derived substantial PFS benefit from SBRT (2.2 months in SOC vs.

10 months in SBRT arm; p=0.002), whereas breast cancer patients did not (4.2 vs. 4.4 months, p=0.2).

No difference in OS between arms has yet been seen in either cohort.

The study was closed to accrual after a preplanned interim analysis crossed a prespecified efficacy threshold.

Tsai CJ, et al. Int J Radiat Oncol Biol Phys 2022;114(3):1-e612

Prospective Trials on LCT in oligoMets ONCOGENE-ADDICTED NSCLC

Trial	N° patients	PFS2 (months)	Notes
Weickhardt AJ, et al. <i>J Thorac Oncol 2012;7:1807–14</i> (University of Colorado Cancer Center)	65 (27 EGFR+; 38 ALK+)	6.2	Range, 3.7-8 m
Yu HA, et al. J <i>Thorac Oncol 2013;8:346–51</i> (Memorial Sloan-Kettering Cancer Centre)	18 (EGFR+)	10	The median time from local therapy until a change in systemic therapy was 22 months (95% CI:6 to 30 months)
Gan GN, et al. <i>Int J Radiat Oncol Biol Phys. 2014; 88(4):892-8</i> (University of Colorado Cancer Center)	33 (ALK+) 14/33 suitable for SBRT	/	Median overall time on crizotinib among those treated with SBRT(14/33) versus those who progressed but were not suitable for SBRT was 28 and 10.1 months , respectively.

Consolidative Local Ablative Therapy Improves the Survival of Patients With Synchronous Oligometastatic NSCLC Harboring EGFR Activating Mutation Treated With First-Line EGFR-TKIs

Aim: to investigate whether consolidative local ablative therapy (LAT) can improve the survival of patients with stage IV EGFR mutant NSCLC who have oligometastatic disease treated with first-line EGFR-tyrosine kinase inhibitor (TKI) therapy

145 patients were enrolled:

- 51 (35.2%) received consolidative LAT to all oligometastatic sites (all-LAT group),
- 55 (37.9%) received consolidative LAT to either primary tumor or oligometastatic sites (part-LAT group)

39 (26.9%) did not receive any consolidative LAT (non-LAT group)

Xu Q et al, J Thorac Oncol. 2018;13(9):1383-1392

The median follow-up time was 38 months (range, 9.0 to 66.8 months). For the entire cohort, the median PFS (mPFS) was 17.3 months (95% CI: 15.7–18.9) and median OS (mOS) was 35.9 months

The difference was statistically significant between All-LAT group and Part-LAT or Non-LAT group but was not significant between the part-LAT and non-LAT groups

Xu Q et al, J Thorac Oncol. 2018;13(9):1383-1392

ASCO 2021 First-line tyrosine kinase inhibitor with or without aggressive upfront local radiation therapy in patients with EGFRm oligometastatic nonsmall cell lung cancer: Interim results of a randomized phase III, open-label clinical trial (SINDAS) (NCT02893332)

SINDAS: Ph II in Synchronous OMD in EGFR+

≤5 metastases (& primary +/- LNs) ≤2 in any one organ No brain metastases

Wang et al JNCI 2022;

Randomized Trial of First-Line Tyrosine Kinase Inhibitor With or Without Radiotherapy for Synchronous Oligometastatic EGFR-Mutated Non-Small Cell Lung Cancer

The median follow-up was 23.6 months

Treatment yielded no grade 5 events and a 6% rate of symptomatic grade 3-4 pneumonitis in the TKI with RT arm

Wang XS, et al. JNCI J Natl Cancer Inst. 2022; 114(5): djac015

Oligometastatic NSCLC

- 1. Do patients with OM NSCLC benefit from local therapies?
- 2. When should local therapy be administered?
- 3. The choice of the target (volume and dose)

Rusthoven KE, et al. Acta Oncologica 2009; 48:578-583

Deng L, et al. Int J Radiat Oncol Biol Phys 2016; 96(2): S131–S132

ADVANTAGES

UPFRONT LOCAL THERAPY may:

✓ Debulk a tumor to optimize subsequent systemic therapy

Capture patients who might be missed should they have primary disease progression on systemic therapy

Enhance tumor antigenicity to improve effects of immunotherapy

RADIOTHERAPY: IMMUNOSUPPRESSIVE AND PROIMMUNOGENIC EFFECTS

Radiotherapy Induces Multiple Immunomodulatory Changes in the Tumor Microenvironment that may Influence the Effectiveness of Immunotherapy

M1, tumor-associated macrophage; MHC, major histocompatibility complex; PD-L1, programmed cell death ligand-1; TNF-a, tumor necrosis factor alpha. 1. Daly ME, et al. *J Thorac Oncol.* 2015;10(12):1685-1693; 2. Kaur P, Asea A. *Front Oncol.* 2012;2:191; 3. Deng L, et al. *J Clin Invest.* 2014;124(2):687-695.

Combination of SBRT + Immune Checkpoint Inhibitor Increases Distant / Abscopal response

IASLC
A Phase 1 Trial of Concurrent or Sequential Ipilimumab, Nivolumab, and Stereotactic Body Radiotherapy in Patients With Stage IV NSCLC Study

This randomized phase 1 trial combined nivolumab and ipilimumab with sequential or concurrent multisite SBRT in patients with stage IV NSCLC to evaluate safety and obtain preliminary activity data.

Methods

Treatment-naive patients with **widely metastatic NSCLC were randomized** to **concurrent** (SBRT with immunotherapy) or **sequential** (SBRT followed by immunotherapy) treatment. A maximum of four treatment fields received SBRT. Nivolumab and ipilimumab were continued until clinical progression, development of toxicity, or after 2 years.

Bestvina CM, et al. J Thorac Oncol. 2022;17(1):130-140

Results

A total of 37 patients were assessable. No dose-limiting toxicity occurred in the concurrent cohort (n = 18). The sequential cohort required a dose reduction in the central lung group owing to two grade 4 pneumonitis events (2 of 19).

Overall best response was as follows: 5.4% (2 of 37) CR, 40.5% (15 of 37) PR, 16.2% (6 of 37) SD, and 37.8% (14 of 37) PD. Median progression-free survival was 5.8 months (95% confidence interval: 3.6–11.4 mo), with median follow-up of 17.0 months. Median overall survival was not reached.

Conclusions

Concurrent nivolumab, ipilimumab, and SBRT were not more toxic than sequential therapy, and multisite SBRT was well tolerated in widely metastatic patients. Multimodality therapy resulted in durable metastasis control and encouraging early overall survival.

Bestvina CM, et al. J Thorac Oncol. 2022;17(1):130-140

The PEMBRO-RT study:

Phase II trial of SBRT followed by Pembrolizumab vs Pembrolizumab

Theelen W, et al. JAMA Oncology 2019; 5(9):1276-1282

OVERALL RESPONSE RATE

	Experimental arm n = 36	Control arm n = 40
Best overall response		
Complete response	3	1
Partial response	14	8
Stable disease	9	10
Progressive disease	10	21
Objective response rate (ORR) at 12 weeks		
Overall*	36% (13/36)	18% (7/40)
PD-L1 TPS 0%	22% (4/18)	4% (1/25)
PD-L1 TPS 1-49%	38% (3/8)	38% (3/8)
PD-L1 TPS ≥50%	60% (6/10)	60% (3/5)
Disease Control Rate (DCR) at 12 weeks**	64% (23/36)	40% (16/40)

*p = 0.07; **p = 0.043

Response to Treatment

Theelen W, et al. JAMA Oncology 2019; 5(9):1276-1282

Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials PEMBRO-RT + MDACC

Findings	PEMBRO	SBRT+PEMBRO	
Pts	76	72	
FUP	33 months (IQR 32.4-33.6)		
Irradiate site	Lung metastasis [39%], int and lung prima		
Abscopal Response Rate	19.7% (15 of 76)	41.7% (30 of 72)	odds ratio [OR] 2·96, 95% Cl 1-42–6.20; p=0.0039)
mPFS	4.4m IQR 2.9–5.9)	9.0m (6.8–11.2)	hazard ratio [HR] 0.67, 95% CI 0.45–0.99; p=0.045
mOS	8.7 months (6.4–11.0)	19.2 months (14.6–23.8)	HR 0.67, 0.54–0.84; p=0.0004

Theelen W, et al. The Lancet Respirarory Medicine 2021; 9(5):467-475

Oligometastatic NSCLC

- 1. Do patients with OM NSCLC benefit from local therapies?
- 2. When should local therapy be administered?
- 3. The choice of the target (volume and dose)

THE CHOICE OF TARGET

- Not all targets are immunogenically equal
- Most case of abscopal effects have involved visceral organs rather than bone

Kang J, et al. J Immunother Cancer 2016, 4:51 Fujisaki J, et al. Nature 2011; 474:216-9

Ipilimumab with stereotactic ablative radiation therapy: Phase I results and immunologic correlates from peripheral T-cells

Radiation Targeting Liver Radiation Targeting Lung

0 0

Hepatic irradiation increases early systemic immune activation relative to lung radiation, as indicated by increasing proportions of T-cells expressing antigens with pro-immune function and compensatory increases in antigens with inhibitory functions.

Tang C, et al. Clin Cancer Res. 2017; 23(6): 1388–1396

Fractionated but not single dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody

An abscopal effect, defined as a significant growth inhibition of the tumor outside the field occurred only in mice treated with the combination of 9H10 and fractionated radiotherapy (p<0.01)

Synergy with anti-CTLA4/anti-PD-1

Concluding Remarks

- Many revolutionary advances have recently been made in the management of stage IV NSCLC.
- In comparison to TKIs alone, a combination of TKIs and radiation has been shown in numerous clinical studies to improve survival outcomes.
- ➤ Immunotherapy is now at the forefront of treatment in oncogenic driver negative NSCLC.
- Preclinical and recent clinical evidences in NSCLC have shown that radiotherapy might be a potent immunomodulator, enhancing the efficacy of the immune response facilitated by immune checkpoint blockade.